【能源人都在看,点击右上角加'关注'】

本文创新点
针对国内外对CO2地质封存与利用的理论计算储量公式进行了整理,评价了其优劣,重点对国内已经开展运行的示范工程进行了梳理,指出了现存的主要问题,为下一步国内CCUS示范工程选址提供参考依据。
作者简介

孙腾民
中国矿业大学
孙腾民(1998—),男,甘肃平川人,硕士研究生。
主要成果:参与第二届国际能源与环境会议并作报告
研究方向:CO2地质封存与利用
作
作 者
孙腾民1,2,3,4,刘世奇1,2,汪 涛1,2,3,4
单 位
1.中国矿业大学 低碳能源研究院 2.中国矿业大学 江苏省煤基温室气体减排与资源化利用重点实验室 3.中国矿业大学 资源与地球科学学院 4.中国矿业大学 煤层气资源与成藏过程教育部重点实验室
摘 要
CCUS(Carbon Capture,Utilization and Storage,碳捕集、利用与封存)技术是减少化石能源发电和工业生产过程中CO2排放的关键技术,也是我国实现碳中和的兜底技术。CO2地质封存是CCUS技术的核心组成部分,决定了CCUS技术的发展潜力和发展方向,建立适用我国地质特点的CO2封存潜力评价方法,科学评估我国主要沉积盆地CO2封存潜力是我国CCUS技术发展的基础。国外将CO2地质封存潜力评价分为国家/州级筛选、盆地级评价、场址描述、场址应用4个阶段,并将封存地质体特征、区域地质、评估目的、地方保护、社会健康、封存安全和环境风险等作为主要指标,形成了一系列盆地级别评价指标体系,同时针对不同封存地质体,建立了CSLF(碳封存领导人论坛)法、DOE(美国能源部)法、欧盟法,ECOFYS和TNO-TING法等CO2封存量计算方法。我国封存潜力评估整体处于起步阶段,尚未建立统一、系统的封存潜力评估方法,采用的封存潜力评价方法主要是基于层次分析法的模糊综合评价,并发展了封存潜力的次级盆地评价方法和CO2封存量的溶解度计算方法。我国CO2地质封存潜力巨大、方式多样,封存有利区域为渤海湾盆地、松辽盆地、鄂尔多斯盆地、准噶尔盆地、苏北盆地和四川盆地。由于中国地质条件的复杂性,采用不同评价方法评估得到的CO2封存潜力差距较大,亟需对深部咸水层、正在开采或枯竭的油气田、深部不可采煤层、浅海等主要封存地质体开展CO2封存潜力的精细评估。
研究背景
化石能源在全球能源系统中占主导地位。化石能源的大规模使用产生了大量CO2、CH4、N2O等温室气体,加剧了全球气温变暖的趋势。其中,CO2含量多,所占比例大,对全球升温的贡献最大。据全球碳地图集2019年的统计数据,自2006年我国CO2排放量超过美国,连续14a成为全球最大的温室气体排放国,减排压力巨大。
碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)技术被认为是减少化石能源发电和工业生产过程中CO2排放的关键技术。根据国际能源署(IEA)的预测,2070年要实现全球陆地地表气温增加量控制在1.5℃ 以内,CCUS技术可分别贡献钢铁、水泥、化工、燃料转换和发电行业25%、61%、28%、90%和16%的碳减排量。目前,包括IEA在内的全球主要能源研究机构、主要碳减排积极倡导组织和国家一致将CCUS技术作为未来的主要碳减排技术。CO2地质封存是CCUS技术的重要组成部分,是国际公认的减少CO2排放的地质处置方法,其主要封存地质体包括深部咸水层、正在开采或枯竭的油气田、深部不可采煤层、玄武岩层、浅海等。中国能源消费以煤炭为主,2020年煤炭消费量占能源消费总量的 56.8%(数据来源:国家统计局),其中,燃煤电厂是主要的大型CO2排放点源,发展CO2地质封存技术是减少煤炭燃烧过程中碳排放的有效途径之一,将有效助力我国实现碳中和目标。
1 CO2地质封存潜力评价方法
1.1 CO2地质封存潜力表征模型
CO2地质封存是将CO2以吸附态、游离态、水溶态和矿化态等形式储集于封存地质体中。封存地质体的CO2封存潜力受其规模、封闭性、埋深、孔隙度、渗透率、温度、压力、地应力、水文等地质条件,以及技术、经济和政策措施等因素综合影响。BACHU和SHAW最先系统地提出了CO